Looking for a Tutor Near You?

Post Learning Requirement ยป
x
x

Direction

x

Ask a Question

x

Hire a Tutor

Course Details

Simpliv Llc

Complete Google Data Engineer and Cloud Architect Guide

By: Simpliv Llc

View All 90 Courses

Details

This course is a really comprehensive guide to the Google Cloud Platform - it has ~25 hours of content and ~60 demos.

The Google Cloud Platform is not currently the most popular cloud offering out there - that's AWS of course - but it is possibly the best cloud offering for high-end machine learning applications. That's because TensorFlow, the super-popular deep learning technology is also from Google.

What's Included:

  • Compute and Storage - AppEngine, Container Engineer (aka Kubernetes) and Compute Engine
  • Big Data and Managed Hadoop - Dataproc, Dataflow, BigTable, BigQuery, Pub/Sub 
  • TensorFlow on the Cloud - what neural networks and deep learning really are, how neurons work and how neural networks are trained.
  • DevOps stuff - StackDriver logging, monitoring, cloud deployment manager
  • Security - Identity and Access Management, Identity-Aware proxying, OAuth, API Keys, service accounts
  • Networking - Virtual Private Clouds, shared VPCs, Load balancing at the network, transport and HTTP layer; VPN, Cloud Interconnect and CDN Interconnect
  • Hadoop Foundations: A quick look at the open-source cousins (Hadoop, Spark, Pig, Hive and HBase)

Who is the target audience?

  • Yep! Anyone looking to use the Google Cloud Platform in their organizations
  • Yep! Any one who is interesting in architecting compute, networking, loading balancing and other solutions using the GCP
  • Yep! Any one who wants to deploy serverless analytics and big data solutions on the Google Cloud
  • Yep! Anyone looking to build TensorFlow models and deploy them on the cloud

BASIC KNOWLEDGE

  • Basic understanding of technology - superficial exposure to Hadoop is enough.

WHAT YOU WILL LEARN

  • Deploy Managed Hadoop apps on the Google Cloud
  • Build deep learning models on the cloud using TensorFlow
  • Make informed decisions about Containers, VMs and AppEngine
  • Use big data technologies such as BigTable, Dataflow, Apache Beam and Pub/Sub